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ABSTRACT
A key obstacle to developing a satisfying theory of galaxy evolution is the difficulty in ex-
tending analytic descriptions of early structure formation into full nonlinearity, the regime in
which galaxy growth occurs. Extant techniques, though powerful, are based on approximate
numerical methods whose Monte Carlo-like nature hinders intuition building. Here, we de-
velop a new solution to this problem and its empirical validation. We first derive closed-form
analytic expectations for the evolution of fixed percentiles in the real-space cosmic density
distribution, averaged over representative volumes observers can track cross-sectionally. Us-
ing the Lagrangian forms of the fluid equations, we show that percentiles in δ—the density
relative to the median—should grow as δ (t) ∝ δ α

0 tβ , where α ≡ 2 and β ≡ 2 for Newtonian
gravity at epochs after the overdensities transitioned to nonlinear growth. We then use 9.5
sq. deg. of Carnegie-Spitzer-IMACS Redshift Survey data to map galaxy environmental den-
sities over 0.2 < z < 1.5 (∼7 Gyr) and infer α = 1.98±0.04 and β = 2.01±0.11—consistent
with our analytic prediction. These findings—enabled by swapping the Eulerian domain of
most work on density growth for a Lagrangian approach to real-space volumetric averages—
provide some of the strongest evidence that a lognormal distribution of early density fluctua-
tions indeed decoupled from cosmic expansion to grow through gravitational accretion. They
also comprise the first exact, analytic description of the nonlinear growth of structure extensi-
ble to (arbitrarily) low redshift. We hope these results open the door to new modeling of, and
insight-building into, the diversity of galaxy growth in cosmological contexts.
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1 INTRODUCTION

The growth of structure out of the random density fluctuations
at early times is a key tenet of modern cosmology (e.g. Peebles
1967), and the core of any theory of galaxy formation (e.g. Blumen-
thal et al. 1984). In Press-Schechter (Press & Schechter 1974) and
Extended Press-Schechter (Bond et al. 1991) formalisms, Fourier
modes grow linearly with time prior to decoupling from the Hub-
ble expansion, with the addition of semi-analytical approximations
for baryonic physics (e.g. Kauffmann et al. 1993; Cole et al. 1994)
providing nearly all modern inferences into galaxy formation and
evolution (e.g. Benson et al. 2003).

After decoupling from the Hubble expansion, however, den-
sity peaks transition from linear to non-linear growth. This non-
linear evolution of the cosmological matter density field is a diffi-
cult theoretical problem as well as an intractable observational one,
owing to the impossibility of studying the time—or longitudinal—

evolution of individual density fluctuations1. The long-term be-
haviour of the matter density field in this regime has largely been
trusted to N-body simulations, as accurate analytical methods for
following the long-term trajectories of individual modes or halos
have not yet been discovered. Furthermore, deriving an empirical
picture of the growth of nonlinear structure requires the inversion
of cross-sectional studies of distributions of different galaxies at
different epochs—a fraught and perhaps underdetermined mathe-
matical exercise. And while it has long been recognized that the
growth of structure in the nonlinear regime is a difficult diffusion

1 Within different redshift slices—i.e. at different epochs—one’s observa-
tions cover independent cross sections of different density fluctuations, and
do not track the longitudinal evolution of the same density fluctuations (e.g.
Abramson et al. 2016).
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2 Kelson et al.

problem (e.g., Bond et al. 1991), the non-Markovian2 nature of halo
growth trajectories complicates the derivation of mathematical ex-
pectations for the behaviour of mass accretion beyond those from
the central limit theorem or perturbation theory (e.g., Coles & Jones
1991; Ma & Bertschinger 1995; Ma & Fry 2000; Achitouv et al.
2013).

As it turns out, simple solutions to the equations governing the
growth of structure are possible if they’re recast in terms of den-
sity ensembles or percentiles in a representative distribution. Doing
so conveniently shifts the fluid equations from the standard—and
complicated—Eulerian framework to a simpler, Lagrangian one,
allowing us to derive new analytical expectations for the mean
growth of densities in the nonlinear regime.

To validate these predictions—and the underlying picture
of nonlinear growth arising from the gravitational collapse of
modes that have decoupled from the Hubble expansion—we use
the Carnegie-Spitzer-IMACS (CSI) Redshift Survey, a data set
uniquely suited to testing this framework. CSI’s combination of
broadband photometry and low-dispersion spectroscopy enabled
the measurement and inference of a range of derived properties,
such as redshifts, stellar masses, emission line luminosities, and in-
formation on recent star-formation. As discussed in Kelson et al.
(2014) the survey was designed to study the evolution of galaxies,
their environments, and the interplay between them. By selecting
in the near-IR, the CSI Survey efficiently traces the stellar mass of
average galaxies to z∼ 1.5 (and more massive ones up to z∼ 1.8).

In this work we measure distributions of local stellar mass
densities using CSI’s ∼ 9.5 square degrees of coverage in the
SWIRE XMM and CDFS fields. To illustrate the scale of these
fields we show four redshift slices of the XMM field in Figure 1,
colour coding the galaxy points by local stellar mass density (as de-
scribed in §4). The CDF field, slightly smaller in area, shows visible
structures that are similar in characteristic to the XMM field.

Percentiles in the distribution of local stellar mass densities—
over approximately 7 Gyr of cosmic time—are used as proxies that
trace the average growth of ensembles of matter density peaks. In
this work we assume that local matter density fluctuations are di-
rectly traced by stellar mass (i.e. near-IR, luminous galaxies)—at
least over those epochs at which galaxies exist, and thus use the
evolution of density at fixed percentile to characterise the nonlinear
growth of structure.

By deriving analytical expectations for how density distribu-
tions should evolve in the mean using a Lagrangian formalism,
our comparisons with the CSI measurements then provide explicit
tests that the growth of structure is indeed a process of gravita-
tional collapse. Should the accuracy of the derived algebraic forms
be borne out, studies of the growth of structure and the growth of
galaxies may then be better understood—or even more accurately
modeled—through similar analytical approaches.

The paper is structured as follows: first, we derive in §2 how
ensembles of early overdensities that decoupled from the Hubble
expansion should evolve on average. In §3, the CSI data set is sum-
marized, including upgrades to the SED modeling and resulting
improvements to survey robustness and data quality. In §4 we de-
scribe measuring local densities using Delaunay triangulation, fol-
lowed by an empirical picture of the evolution in densities over

2 When random changes to a process—such as the motions of particles in
an ideal gas—are uncorrelated with previous changes, the process is said to
be Markovian, of which Brownian motion is an example. When changes to
a process are correlated over time, it is said to be non-Markovian.

cosmic time in §5. From the observed evolution we infer the form
of the initial distrbution of densities at the time when stellar mass
growth began in the universe in §6, to be used in §7 to fit for the
mean growth of overdensities (and diminution of underdensities) as
power-laws in both time and initial density simultaneously. Impli-
cations of our work—which confirm the analytical forms derived
in §2—are summarized in §8.

The cosmological parameters used in this work are h = 0.68,
ΩM = 0.31, and ΩΛ = 0.69 (Planck Collaboration et al. 2015).

2 EXPECTATIONS FOR THE GROWTH OF
STRUCTURE IN THE REAL DOMAIN

The continuity equation dictates the evolution of individual den-
sity fluctuations with time under the constraint of mass conserva-
tion. However, the integration of the fluid equations—a procedure
without closed form solutions—is only truly of astronomical utility
when volume-averaged. From an astroinformatic perspective, ob-
servations cannot provide longitudinal studies of individual parcels
of mass, because one observes cross sections of different density
fluctuations at different epochs.

Operationally—and from the perspective of observers—this
apparent shortcoming turns out to be a strength, as expectation
values can be derived straightforwardly for well-defined cross-
sectional studies of density fluctuations. The “trick” here is in
recognizing that for regions that have decoupled from the Hub-
ble expansion, Gauss’s theorem simplifies the continuity equation
in very helpful ways when volume-averaging both sides. We note
that the procedure of averaging the fluid equations—temporally or
spatially—is occasionally referred to as a “Reynold’s decomposi-
tion.”

We now derive the mean Lagrangian time derivative of δ ,
where δ ≡ ρ/〈ρ〉−1, for fixed percentiles in δ , and where ρ is the
matter density at arbitrary locations within regions that have tran-
sitioned to nonlinear growth. In tracking the evolution of the distri-
bution of local stellar mass densities, we make the assumption that
stellar mass growth arises through the accretion of baryons–either
in the form of gas to be converted to stars, or in the form of stars
already converted from gas through previous accretion events—
with the stellar baryons in either case tracking dark matter accretion
in the mean. This assumption is only being made on scales much
larger than that of individual galaxy-scale halos, through the sum-
ming of stellar mass over the many neighbouring vertices in the De-
launay triangulation (see below). Thus any galaxy-scale halo-mass-
dependence of the efficiency with which baryons are converted to
stars is averaged over many galaxies at a time.

We start with the Lagrangian continuity equation already cast
in terms of overdensity δ : In this approach δ—normally a function
of space and time—is now a function of an abstract mass-parcel
coordinate, m, and conformal time, τ ≡ t/a:

Dδ (m,τ)

Dτ
=−[1+δ (m,τ)][∇ ·u(m,τ)] (1)

and, because we are going to discuss density fluctuations that have
just (barely) decoupled from the Hubble expansion, the relevant
form of the momentum equation is

Du(m,τ)

Dτ
=−∇φ (2)

where the gravitational potential is given by

∇
2
φ = 4πGa2

ρMδ (m,τ) (3)
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Gravity and the nonlinear growth of structure 3

Figure 1. The positions, in comoving Mpc. for galaxies with stellar masses M∗ > 1010M� in four redshift slices in the CSI XMM field. The colour of each
point reflects the local stellar mass density relative to the median density in the slice (see §4), while the point sizes reflect the stellar masses of the individual
galaxies. High density regions are expected to grow in density contrast with time, while low density regions are expected to be hollowed out.

and ρM ≡ (3ΩMH2
0 )/(8πGa3), the mean matter density at the

epoch corresponding to scale factor a. For explicitness, we are
also going to use the Dirac delta function–denoted here as ψ be-
cause δ is already spoken for—to isolate specific mass parcels that
originated from a set of “primordial” ones at t = tnl , the epoch at
which the relevant fluctuations hosting the seeds of galaxies de-
tached from the Hubble expansion.

Using this form, we now proceed to derive the volumetric
mean change in density as functions of conformal time—Dδ/Dτ—
at fixed initial overdensity, i.e. δ (m,τnl)≡Qδ (p), where p denotes
the percentile in the distribution of initial overdensities at the onset
of nonlinearity τnl , Qδ (p) is the quantile function of that distribu-
tion:〈

Dδ

Dτ

〉
V |p

=
∫

V

∫
∞

−1

Dδ (m,τ)

Dτ
ψ[δ (m,τnl)−Qδ (p)]dδ (m,τnl)dV

(4)

where ψ[δ (m,τnl)−Qδ (p)] isolates those overdensities that start
out with the same value at time τ = τnl , again, the time when the

relevant density fluctuations have decoupled from the Hubble ex-
pansion. Thus,

〈
Dδ

Dτ

〉
V |p

=−
∫

V

∫
∞

−1
[1+δ (m,τ)][∇ ·u(m,τ)]×

ψ[δ (m,τnl)−Qδ (p)]dδ (m,τnl)dV
(5)

Because modes grow independently prior to nonlinearity

∫
V

∫
∞

−1
[∇ ·u(m,τ)]ψ[δ (m,τnl)−Qδ (p)]dδ (m,τnl)dV ≡∫

V
[∇ ·u(m,τ)]dV

(6)

rendering the first term in Equation 5 identically zero due to
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4 Kelson et al.

Gauss’s (divergence) theorem. Thus we are left with〈
Dδ

Dτ

〉
V |p

=−
∫

V

∫
∞

−1
δ (m,τ)[∇ ·u(m,τ)]×

ψ[δ (m,τnl)−Qδ (p)]dδ (m,τnl)dV

(7)

Taking the derivative of both sides with respect to t,〈
D2δ

Dτ2

〉
V |p

=− D
Dτ

∫
V

∫
∞

−1
δ (m,τ)[∇ ·u(m,τ)]×

ψ[δ (m,τnl)−Qδ (p)]dδ (m,τnl)dV

(8)

noting that the scale factor a was set at the time of decoupling. Only
one of the terms in Equation 8 survives integration as nonzero, such
that〈

D2δ

Dτ2

〉
V |p

=−
∫

V

∫
∞

−1
δ (m,τ)

[
∇ · Du(m,τ)

Dτ

]
×

ψ[δ (m,τnl)−Qδ (p)]dδ (m,τnl)dV

(9)

Substituting Equation 2 into the above, one obtains〈
D2δ

Dτ2

〉
V |p

=
∫

V

∫
∞

−1
δ (m,τ)∇2

φψ[δ (m,τnl)−Qδ (p)]dδ (m,τnl)dV

(10)

The integration over δ (m,τnl) isolates those fluctuations that
began as δ (m,τnl) = Qδ (p) ≡ δp, so we can write that the mean
second derivative—again at fixed percentile p—is simply:〈

D2δ

Dτ2

〉
V |p

= 4πGa2
ρMδ

2
p (11)

or,〈
D2δ

Dτ2

〉
V |p

=
3
2

ΩMH2
0 a−1

δ
2
p (12)

We therefore anticipate that at times τ > τnl the ensemble
should appear to have a mean growth rate of〈

Dδ

Dτ

〉
V |p

=
3
2

ΩMH2
0 a−1

δ
2
p (τ− τnl) (13)

The constant of integration is expected to be identically zero over
cosmological volumes for modes just detaching from the Hubble
expansion.

Note that the above form is symmetric in δp. In other words,
parcels with a mass consistent with originating from the popula-
tion at δp = −1/2 change on average at the same rate as parcels
from the δp = 1/2 population change on average. This is not the
same thing as quantifying the amount of matter moved from the
ensembles of density fluctuations defined by p < 0.5. On average
the Universe moves mass out of the population of p < 0.5 den-
sity parcels to higher density, and we are interested in computing
the amount of mass lost from the ensembles of low δpin order to
properly construct the cosmological evolution in the distribution of
densities.

If we define δ ′ ≡ 〈ρ〉/ρ − 1, the average amount of mass
gained from regions of low density can be straightforwardly com-
puted, with the chain rule recasting the result in terms of δ , and
yielding a result then valid for the ensembles of parcels with initial
densities ρ < 〈ρ〉 (at least until the budget in material in the p< 0.5
ensembles has been exhausted).

The two cases for the mean growth/loss trajectories at fixed

density percentile are thus:

〈δ 〉V |p =

{
δp +

3
4 ΩMH2

0 a−1δ 2
p (τ− τnl)

2 δp > 0
δp− 3

4 ΩMH2
0 a−1δ 2

p (1+δp)
2(τ− τnl)

2 δp < 0
(14)

where, again, δp ≡ δ (p,τnl), and δp > −1. When tracked through
time, the density at fixed percentile should therefore follow these
trajectories over epochs when sufficient material is available to
sustain growth (or loss)—while none of the individual parcels of
matter probably do. As a reminder, a is set at the epoch of non-
linearity because the density evolution is occuring in regions that
have decoupled from the Hubble expansion at that epoch; i.e.,
a≡ 1/(1+ znl).

Let us summarize the expectations derived above:

• The mean rates of growth for (initial) density fluctuations
ought to be larger for regions that initially had higher density
• For density percentiles that will experience unabated

collapse—e.g., p > 0.5—density growth should scale in the mean
by their initial δ α , with α ≡ 2;
• For density percentiles that suffer evacuation—e.g., p < 0.5—

densities should decline in the mean by their initial δ α (1+ δ )2,
again α ≡ 2;
• The mean trajectory for any density percentiles should be

quadratic in time δ (τ)− δ (τnl) ∝ (τ − τnl)
β , with β ≡ 2, at least

while there is sufficient material to sustain mass flow;
• Any additional physics should manifest as additional bound-

ary and/or initial conditions, modifying expectations from these
canonical values of α ≡ 2 and β ≡ 2

We now proceed to an explicit test of whether the evolution
of the density distribution indeed follows these expectations for
the growth of structure, employing a large sample of “stellar mass-
selected” galaxies in CSI, to directly measure α and β . For ease,
we will revert back to using t in the remainder of the paper as we
work within the framework of the CSI dataset. After studying the
evolution of density percentiles in CSI, and what they mean for the
mean growth of nonlinear structure, we discuss a broader set of
implications for future work.

3 SUMMARY OF THE DATA

The Carnegie-Spitzer-IMACS Redshift Survey (Kelson et al. 2014)
was designed to study the relationship between galaxy growth and
environment over the last 9 Gyr of the history of the Universe, the
period over which the states and appearances of today’s galaxies
were defined and settled. The survey fields were targeted for low-
dispersion spectroscopy with the Inamori Magellan Areal Camera
and Spectrograph (IMACS; Dressler et al. 2011) using, at first, a
three-layer prism described by Coil et al. (2011) for the first third
of the survey, and then using an innovative eight-layer disperser for
the rest. While both dispersers provide a characteristic resolution
of R ∼ 25, the newer prism more effectively balances the wave-
length dependence of the spectral resolution, with higher resolution
through the red. Again, details can be found in Kelson et al. (2014).

CSI chiefly selected galaxies brighter than [3.6] 6 21 mag
(AB). The effective stellar mass depth for a given redshift—
discussed in more detail by Kelson et al. (2014)—is largely a func-
tion of the M/L ratios of stellar populations, leading to approximate
limits of ∼ 1010M� for star forming galaxies up to z ∼ 1.5 and
∼ 3×1010M� at z∼ 1.4 for galaxies containing old stellar popula-
tions. The bulk of the analysis we perform is with the sample cut at
M∗ > 1010M� when computing local stellar mass densities. When

MNRAS 000, 1–13 (0000)



Gravity and the nonlinear growth of structure 5

Figure 2. Example Delaunay triangulation of CSI galaxies in the redshift slice 0.48 6 z 6 0.60 within the SWIRE XMM field. Each box is 7 Mpc × 7 Mpc.
To compute the surface density at the location of a galaxy of interest (open orange circle) at center of each box, the areas of the adjacent triangles are summed
and multipled by the depth of the redshift slice to derive a local volume element. These volume elements adapt to the point distribution uniquely. Dividing
the completeness-corrected sum of the stellar masses of the galaxies at the vertices of these adjacent triangles (both blue and orange open circles) by the local
volume element, one has constructed an adaptively measured local stellar mass density. Monte Carlo simulations of incomplete, but correctable, catalogs have
verified that these procedures can accurately recover local densities (see text for more details)

distributions of densities are computed and analysed, we perform
similar analyses using cuts of M∗> 2×1010M�, M∗> 5×1010M�,
and M∗ > 6×1010M� in order to test the robustness of the results.

Once the selection is a few tenths of a dex below M∗, our re-
sults do not depend sensitively to the detailed choice of how far
down the mass function we compute the stellar mass densities—
owing to the fact that the integral of the stellar mass function is
already within <∼20% of convergence. When we (later) normalize
local stellar mass densities by the median density at a given epoch,
any systematic change with redshift in the departure from conver-
gence is essentially removed to first order. And while variations in
the shape of the stellar mass function with environment—i.e. with
density—may impose a correlation in the departure from conver-
gence with density at each epoch, this departure itself will largely
evolve at the same rate as the evolution of the stellar mass function
in each density percentile. As such, we should see—to first order—
little-to-no systematic error in the density-dependence of the evolu-
tion of density at fixed percentile, and little-to-no systematic error
in the time-dependent term of the evolution of density at fixed per-
centile. Furthermore, given the magnitude of the difference in M∗

between the field and the richest clusters, < 0.1 dex at z ∼ 1 (van
der Burg et al. 2013), and the fact that such rich environments make
up a tiny fraction of the volume of the universe, we expect such sys-
tematic errors to be significantly smaller than our formal/statistical
errors over most of the density range being probed.

Had we counted local galaxy number densities, then these sys-
tematics would (a) be much larger, since the mass function con-
verges very slowly in galaxy number density, and (b) the differen-
tial selection between star forming and quiescent galaxies at low
stellar masses could leave a larger imprint as differential growth
rates between low and high density percentiles. Furthermore, any
dependencies of the rates of galaxy-galaxy merging on environ-
ment would also bias the results, whereas stellar mass is preserved
under merging. In principle a comparison of number and stellar
mass density evolution could provide insight into galaxy merger
rates when differential selection is carefully modeled, and we leave
such work for a another day.

In the SWIRE XMM field, we use a high quality set of 51001
observations of 42251 galaxies, and in the SWIRE CDFS field,
a high quality set of 40680 observations of 35867 galaxies. Du-
plicate observations remain in our analyses, with each observation

being assigned a reduced weight of 1/Nobs so that the sum of the
weights for a given galaxy observed more than once would equal
the weight for singly observed galaxies.

These samples have been reanalysed since the publication of
Kelson et al. (2014), owing to a growing understanding that the
diversity of galaxy formation histories is not only real (e.g. Abram-
son et al. 2016), but mathematically constrained (e.g. Kelson 2014;
Kelson et al. 2016; Dressler et al. 2018). Thus, we undertook an
extensive effort to refit the CSI SEDs using a library of star for-
mation histories generated in manner that reproduces the observed
distributions of specific star formation rates of real galaxies (Kelson
2014).

Because the histories underpinning the SED fitting are
better constrained, span properties that are more realistic—by
definition—and have significantly fewer free parameters, we were
able to recover redshifts for more objects and to fainter opti-
cal magnitudes, with an average completeness of ∼ 50% over
19 mag<∼ iAB <∼23 mag, declining to ∼ 30% at iAB ∼ 24 mag and
∼ 25% at iAB ∼ 24.7 mag. As described in Kelson et al. (2014),
corrections for incompleteness are trivariate functions of magni-
tude, colour, as well as the local density of sources in the original
IRAC catalog.3

In comparisons with previously published “high-resolution”
redshifts (Le Fevre et al. 2003; Cooper et al. 2012; Scodeggio et al.
2018), we find that over the ranges of stellar mass and redshifts we
are investigating in this paper—M > 1010M�—the CSI redshifts
have typical errors of ∆z≈ 0.01(1+z) for galaxies at 0.56 z6 1.0,
and ∆z≈ 0.02(1+z) for galaxies at 1.06 z6 1.4. The rate of catas-
trophic outlyers (|∆z/(1+ z)| > 0.15) is of order 2− 3%—from a
mixture of our own catastrophic failures and those in published red-
shift catalogs themselves. This level of accuracy is adequate for the
analysis we propose, in which we measure local stellar mass densi-
ties in fairly wide redshift slices.

More details on the derived properties of the sample will be

3 While the completeness corrections used here rely on source-densities
computed in boxes with 0′.5 sides, we have verified that our results do not
depend on this choice. This insensitivity is due to the fact that overdensities
in redshift space do not correspond well to overdensities in the IRAC target
catalog except at the locations of the rarest of very rich/massive groups.

MNRAS 000, 1–13 (0000)



6 Kelson et al.

Figure 3. The results of Monte Carlo simulations of distributions of galax-
ies in fields of variable mean projected density on the sky, in which local
projected densities are computed using the Delaunay Triangulation estima-
tor described in the text. Here we plot local projected density estimates
from catalogs suffering from source-density-dependent incompleteness in a
manner similar to the CSI selection function, plotted against what the lo-
cal projected densities would have been without such incompleteness. The
general correspondance along the unity line indicates that the effects of slit
collisions or other source-density-dependent sources of incompleteness do
not systematically bias our density estimators (red points). In blue we bin
the values of the true projected surface densities—showing the median and
robust standard deviation of Σtrue— at fixed Σmeasured , confirming that sur-
vey incompleteness can be reliably corrected to recover the distributions of
true projected densities.

used in future analyses of the galaxy populations, but the work pre-
sented here relies solely on the most robust outputs of the SED
fitting: redshifts and stellar masses.

4 MEASURING LOCAL VOLUME DENSITIES IN CSI

Here we discuss our procedure for converting galaxy point data to
a map of densities, but one that is not referenced to a specific physi-
cal scale. Outside of the nonlinear regime the evolving density field
is well-understood through its decomposition into Fourier modes
in an Eulerian frame of reference. Typically such scales are investi-
gated using densities measured at specific scales or wavenumbers,
and counting galaxy point data in such cells has a long tradition
of being used to probe the underlying distribution of matter since
at least Coles & Jones (1991). But our expectations for the evolv-
ing distributions of local densities were derived specifically in a
Lagrangian coordinate system, and, as such, we require densities
not measured over a specific scale but be adaptive to the spatially
variable structures in the galaxy distributions.

Adaptive measures of local densities have been used previ-
ously to better understand how and why galaxy properties are cor-
related with environment, such as Dressler (1980)’s use of the ra-
dius enclosing the 10th-nearest neighbour to define a local element
of area.4 We opt here for a more adaptive—and computationally

4 It is also interesting to note that this work presciently identified the im-
portance of early conditions in setting up the long-term divergence in evo-
lutionary states for galaxies in different late-time environments.

Figure 4. The cumulative distributions of local stellar mass densities from
the combined samples of the CSI SWIRE XMM and CDFS fields in eight
redshift slices from z = 0.25 to z = 1.4.

simple—approach, one that is not only fast but easily made robust
against sources of survey incompleteness such as that arising from
slit collisions or luminosity selection.

Briefly, for a list of objects in a fixed redshift slice, we run a
Delaunay triangulation (part of the Visualization Toolkit; Shroeder
et al. 2002). This procedure creates a unique list of triangles with
galaxies at each of the vertices, but under constraints on the small-
est angles to avoid particularly thin triangles. We show three ex-
amples from the Delaunay triangulation from one redshift slice,
0.48 6 z 6 0.60 in the SWIRE XMM field of CSI in Figure 2.
These examples span a range of local densities as can be seen from
the distributions of the galaxies (black filled circles) in each 7 Mpc
× 7 Mpc box, and the lighter line segments outlining the triangles.

We then compute local projected area elements at the location
of a given galaxy (e.g. the galaxies circled in orange) by summing
the areas of the triangles (shown in solid black) connected to that
galaxy. The sizes of the triangles scale directly with the local sep-
arations of galaxies; in regions of high number density these tri-
angles shrink commensurately. When the sum of the triangle areas
is multiplied by the comoving length of the redshift slice, we have
a local volume element. If we had a complete catalog containing
all galaxies, we would define the density as the number of unique
vertices (i.e. number of orange + blue open circles) divided by that
local volume element. A stellar mass density would be defined as
the sum of the stellar masses of the galaxies at these vertices, di-
vided by the local volume element.

However, no redshift survey is 100% complete and this pro-
cedure must be corrected for incompleteness. To do so we incor-
porate galaxy weights: each galaxy thus represents ones just like
it in colour, magnitude, and local source-density but are missing
from the survey. The weights are defined as the inverse of the com-
pleteness for a given galaxy’s colour, magnitude, and local source-
density.5 Completeness-corrected local densities are thus computed
by summing the weights of the galaxies and then dividing by the

5 This approach was validated in Kelson (2014) by verifying that
completeness-corrected local counts systematically reproduce that of the
original photomety catalog.
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Figure 5. (a) The cumulative distributions normalized to the median density at each redshift. (b) Magnification of the low density tail of the cumulative
distributions, with vertical lines at the percentiles displayed in Figure 6. (c) Same as in (b) but for the high densty tail.

volume element.6 Completeness-corrected stellar mass densities
are computed by summing the products of the weights and stel-
lar masses of the galaxies, with subsequent division by the volume
element.

As a reminder, we focus this paper on stellar mass densities
because (1) the steepness of galaxy luminosity and stellar mass
functions leads total number counts to converge slowly, whereas the
integral of stellar mass converges much more rapidly, and (2) num-
ber counts are not preserved under galaxy-galaxy merging whereas
stellar mass remains conserved (modulo tidal ejection or stripping
of loosely bound stars).

In redshift surveys such as CSI, slit collisions reduce the effi-
ciency with which targets can be observed in regions of high source
density. We demonstrate the reliability with which we could re-
cover local number density fluctuations using Monte Carlo simula-
tions of CSI-like survey sampling. By generating fields of galaxies
with the mean CSI source density on the sky, and adding a broad
range of overdensities of varying amplitudes and sizes, and then
“observing” them with similar source-density dependent incom-
pleteness to CSI, we measured local densities using our procedures
and compared them to the true local densities that would have been
derived from a complete and unbiased catalog.

The results of our tests are shown in Figure 3, in which the
measurements of local density in the original, unculled catalog are
plotted along the x-axis, while the incompleteness-corrected local
number densities are plotted along the y-axis. We conclude from
these simulations that so long as we measure local projected den-
sities in CSI using redshift slices that are larger than the typical
redshift uncertainties, our incompleteness-corrected local density
measurements should be robust.

Figure 1 illustrates the spatial distribution of galaxies with
stellar masses M∗ > 1010 M� and their local stellar mass densities
within four redshift slices of ∼ 5.25 square degrees of CSI data.
The galaxy points are colour coded by local density relative to the
median in each redshift slice.

The expectation—as derived in §2—is for high density re-
gions to grow in density contrast relative to the median over time,
and for the low density regions to become increasingly hollowed

6 The distributions of local volume densities we obtain are insensitive to
variations in how we define the source-density dependent term of our com-
pleteness function(s).

out. And while individual over- and under-densities cannot be
tracked with lookback time, the expectation for the average be-
haviour of over- and under-densities can be seen visually in these
data.

Qualitatively one sees a striking increase in density contrast
towards late times, as the topology of the spatial distributions of
the galaxies evolves—to tighter filaments and knots at later times,
as well as to increasingly larger voids. Note that we do not address
such evolution in the specific topological features of the galaxy dis-
tributions, but only here discuss the quantitative evolution in the
global distributions of local densities.

To construct cumulative distributions of local density, we sim-
ply reorder the arrays of local densities and galaxy weights in in-
creasing order of density, with a subsequent cumulative summation
of the weight array. Normalizing the resulting array by the sum of
these weights yields an array easily sifted through to identify the
array positions of density percentiles. Confidence intervals on the
percentiles can be calculated using standard binomial distributional
calculations.

Figure 4 shows the cumulative distributions of local stellar
mass densities in eight redshift slices from z = 0.25 to z = 1.4. A
bulk increase in stellar mass density can be seen as the distributions
shift towards higher mean/median values of stellar mass densities.
However, for the purposes of using the distributions of local den-
sities to characterise the nonlinear growth of structure, we want to
study the distributions of normalized densities—normalized, that
is, by the median in each redshift slice. These are shown in Figure
5(a), in which the distributions look qualitatively similar to each
other, but are indeed distinct in their tails, as magnified in Figure
5(b) and (c).

Figure 5(b) magnifies the low density tail while Figure 5(c)
magnifies the high density tail. In these plots one can directly see
that from early- to late-times the high density tails evolve to in-
creasingly larger density contrasts, and in a manner that is not iden-
tical at each density percentile. Simultaneously, the regions of low
density evolve to even lower density contrasts, also by amounts
that vary with percentile. In the next sections we interrogate these
distributions, to determine whether these increases and decreases
of density contrast with time, and their dependence on density, are
consistent with the analytical forms derived in §2.
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Figure 6. The distribution of local stellar mass densities from the combined
samples of the CSI SWIRE XMM and CDFS fields. Each point represents a
fixed percentile, p, defined over the range −2σ to +2σ for a Gaussian dis-
tribution, in intervals of σ/4. The black filled circles mark the median (i.e.
50th percentile) at each redshift. Cosmic variance is expected to contribute
to the scatter from one redshift to the next at a level of∼ 0.15 dex at z∼ 0.3
and∼ 0.05 dex at z∼ 1, depending on the width of the redshift slice we use
(calculated using mock catalogs from the MDPL2 simulations Klypin et al.
2016; Knebe et al. 2018).

5 THE OBSERVED DISTRIBUTIONS OF LOCAL
DENSITIES

Using the local stellar mass densities, ρ∗, measured at the locations
of the galaxies in CSI, we now investigate how the density distribu-
tion evolves with cosmic time. Figure 6 plots local stellar mass den-
sities for 17 percentiles in the overall density distribution in eight
redshift slices from z ∼ 0.3 to z ∼ 1.4, with the percentiles, p, de-
fined as equivalent to the −2σ to +2σ for a Gaussian distribution,
in intervals of σ/4. The large black circles mark the median (50th
percentile) at each redshift. Cosmic variance is a significant con-
tributor to fluctuations in the distribution with redshift. Using the
MDPL2 simulation catalogs of mock galaxies (Klypin et al. 2016;
Knebe et al. 2018) to estimate the magnitude of cosmic variance
for CSI-like volumes, we find that the median density can fluctuate
by ∼ 0.15 dex at z∼ 0.3 and ∼ 0.05 dex at z∼ 1.

Figure 7 shows these distributions of densities relative to the
median in each redshift slice. When the density percentiles are nor-
malized relative to the median, the fluctuations due to cosmic vari-
ance are greatly diminished and typically less than 0.05 dex, with
the exception of the highest percentiles (p>∼0.95) in the two lowest
redshift slices shown here.

With these data alone one cannot necessarily say how individ-
ual density fluctuations grow with time in the nonlinear regime, but
with these data we can measure mean rates of evolution for each
percentile. As is visible in the figure, higher percentiles have den-
sities that grow in the mean more rapidly with time than lower per-
centile overdensities. Underdense regions, i.e. traced by percentiles
p < 0.5, appear to show negative “growth” in the mean. Together
these data will be shown below to greatly constrain the nature of
the stochastic process that is the nonlinear growth of structure.

For each aspect of our analysis of the CSI redshift catalogs
we have varied the widths of the redshift slices from 200 comoving
Mpc to 400 comoving Mpc and find that our results remain robust,

Figure 7. The distribution of local stellar mass densities relative to the me-
dian within a redshift slice. Relative to the median local stellar mass density,
higher density percentiles are growing more rapidly than lower density per-
centiles.

with the basic pattern shown in Figures 6 and 7. We have also per-
formed the same analysis on catalogs of galaxies in the MDPL2
simulations (Klypin et al. 2016; Knebe et al. 2018) and find similar
patterns.

6 MAKING INFERENCES FROM THE EVOLUTION OF
THE DENSITY PERCENTILES

In §2 we derived a set of expectations for how the local mass den-
sity attached to a given percentile in the density distribution should
evolve: quadratic in time, with a quadratic dependence on the ini-
tial density for p > 0.5, and a quartic dependence on initial density
for p < 0.5. If one knows a priori the distribution of density fluctu-
ations transitioning to nonlinear growth that are traced by galaxies
at the start of star formation, then one has the required mapping of
p→ δp to begin modeling the CSI observations in Figure 7.

While we expect that distribution of densities to follow some-
thing like a lognormal distribution (e.g. Coles & Jones 1991; Wang
et al. 2011) with a standard deviation of order unity, we first employ
the CSI data to test and confirm these expectations—by evolving
the individual density percentiles back in time to the epochs when
star formation may have began (i.e. t = t0 at z>∼10). Once the form
of the initial density distribution is understood, we will then use
that functional form—with any additional and required nuisance
parameters to be marginalized over—in fitting a reasonable set of of
percentiles simultaneously. In this section we treat and fit each per-
centile independently and interpret what those individual fits yield.

For a given percentile, p, let us write that ρ∗(t, p)/ρ∗(t,0.5)
evolves according to

ρ∗(t, p)
ρ∗(t,0.5)

= A(p)+B(p)(t− t0)β (15)

where t is the time since the Big Bang and t0 is the age of the uni-
verse when stellar mass started to form. Note that we have switched
from τ in §2 to the more familiar t for cosmic time. By definition
A(p) is the pth percentile density at the start of stellar mass growth,
and B(p) is the mean rate of growth for the ensemble of those initial
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Figure 8. The estimated initial densities, A(p), for each percentile, are
shown with the black points, as derived from fitting the evolution of the
densities for each percentile as separate power-law functions of time as de-
scribed by Equation 15. Individual measurements of relative density from
seven redshift slices are using the coloured points. A least-squares fit for the
lognormal distribution of A that best fits the black points was performed,
shown by the red line, with σ = 0.80± 0.01. Evolving the highly non-
lognormal distribution of densities back in time to the start of galaxy growth
yields a lognormal distribution of early densities to a high degree of preci-
sion and within the measurement errors, independnt of our redshift binning,
and independent of the assumption that β = 2.

densities. For this exercise we treat the A’s and B’s as independent.
Once we know the functional form of the initial conditions, we will
be able to abstract and generalize Equation 15.

For the purposes of the figures, we adopted a power-law evo-
lution in time with β = 2 but note that similar results are found for
the inferred initial density distribution had we adopted any value
at least over 1 6 β 6 3—though slightly different values for the
standard deviation, σ , of the lognormal would have resulted.

Assuming β = 2, we derive a correlation of A(p) with per-
centile, p, shown by the black points in Figure 8. For com-
parison with the individual epochs in CSI, data points for
ρ∗(t, p)/ρ∗(t,0.5) are also shown using the smaller coloured points
(these were derived from an analysis using seven redshift slices
over the same epoch, to reduce clutter). At late times, the distri-
bution of densities is, as is well known, far from lognormality.
To within our observational errors, we find that a lognormal pro-
vides an accurate description of the density distribution inferred
for the epochs when star formation began, with σ = 0.80± 0.01
(shown by the solid red line). Restated in the context of §2, A(p)≡
Qδ (p)+1≡ exp [σΦ−1(p)], where Φ−1(p) is the probit function7

and σ is the standard deviation of the initial lognormal density dis-
tribution.

In Figure 9 we plot the measured values of B(p) for positive
overdensities—p > 0.5—versus the corresponding values of A(p)
from the fits to the evolution of the individual percentiles. Com-
paring Equation 15 to the expressions derived in §2 we identify

7 The probit function is the inverse of the normal cumulative distribution
function.

Figure 9. The correlation of B(p) with A(p)− 1 for p > 0.5, as derived
from fitting the mean change in density at fixed density percentile with the
power-law form of Equation 15, assuming β = 2, and noting that that δp ≡
A(p)−1. The expectation of B(p) = 3

4 ΩMH2
0 (1+ znl)[A(p)−1]2 is shown

by the black line (assuming znl = 10). While the inferred rates of growth
appear consistent with a logarithmic slope of α = 2, we fit the density- and
time-dependence of the mean evolution of structure in the next section to
simultaneously derive confidence intervals on α and β .

δp ≡ A(p)− 1, and thus plot the expectation B(p) ∝ [A(p)− 1]2

by the solid black line, including the expected normalization. Note
that, in general, departures in the normalization will be sensitive
to the sizes of the redshift slices in our analysis and, in particular,
how their sizes compare to the typical redshift uncertainties, among
other systematic effects. As was clearly visible in Figure 7, regions
of high density grow in the mean at rates significantly greater than
regions of low density, and Figure 9 indicates that the data appear
consistent with expectations of α = 2.

The accurate measurement of evolution in the low density per-
centiles can be hampered by incompleteness, as well as large and/or
variable redshift errors, at least releative to the sizes of the redshift
slices. Nonetheless, we plot in Figure 10 both the low and high den-
sity regimes from the data binning used in Figures 6 and 7. The in-
ferred values of A(p) and B(p) for p < 0.5 are shown in red, while
blue is retained for p > 0.5. As a reminder, the predicted depen-
dence in the low density regime is B(p) ∝ [A(p)− 1]2A(p)2, now
shown by the dashed black line. The solid black line, as in Figure 9,
shows the prediction for positive overdensities. The measured evo-
lution of both high and low density percentiles appear qualitatively
consistent with the expected density-dependencies derived in §2.

We now proceed in the next section to jointly infer confidence
limits on both α and β , adopting a lognormal form for the density
distribution at the start of stellar mass growth with an unknown σ .
Any quantitative constraints on α and β will give us insight into
the nature of the process that is the growth of structure.

MNRAS 000, 1–13 (0000)



10 Kelson et al.

Figure 10. Same as in Figure 9 but now including the low density per-
centiles in red. The high density expectation of B(p) = 3

4 ΩMH2
0 (1 +

znl)[A(p)− 1]2 is shown by the solid black line, while the low density ex-
pectation of B(p) =− 3

4 ΩMH2
0 (1+znl)[A(p)−1]2A(p)2 is shown using the

dashed black line. While accurate measurements at low density are more
hampered by systematic uncertainties in the analysis of the CSI data set
compared to high density regions, the predictions and mean observed evolu-
tion for regions losing mass are in qualitative agreement. In the next section,
when we fit for the density- and time-dependence of the mean evolution of
structure simultaneously, we include only measurements at Φ−1(p) > −1
to mitigate the larger effects of systematic uncertainties at low density.

7 THE MEAN TRAJECTORIES OF NONLINEAR
GROWTH AND THEIR DEPENDENCIES ON INITIAL
DENSITY AND COSMIC TIME

In the previous section we showed that the individual density per-
centiles at late times can be monotonically related to equivalent
percentiles in an initial lognormal spectrum of densities. We use
this information now to construct a simple parameteric model for
the mean growth of all the positive overdensities of the form shown
in Equation 15, adopting

A(p) = exp [σΦ−1(p)] (16)

B(p) =

{
+γC[A(p)−1]α (t− t0)β p > 0.5
−γC[A(p)−1]α A(p)2(t− t0)β p < 0.5

(17)

where Φ−1(p), again, is the probit function and σ is the standard
deviation of the initial lognormal density distribution (with σ now
treated as an unknown). Our derivations in §2 predicted that these
histories should be normalized by C ≡ 3

4 ΩMH2
0 (1+ znl), but we

include γ as an of-order-unity factor in the fit to account for (a) sys-
tematics that can dilute the observed densities relative to the me-
dian; and (b) a systematic departure of the mean epoch of nonlin-
earity from our adoption of znl = 10. While the zeropoint in time is
set by this choice, our results are currently not sensitive to it given
the lateness of the epochs being surveyed in CSI, and so marginal-
ize over γ as a nuisance parameter.

We grid each of the four unknowns, α , β , γ , and σ , and com-
pute four-dimensional posteriors. As any a priori derivation of σ is
beyond the scope of this initial work, we also marginalized over it.

Figure 11(top) shows one set of results from fitting the evolv-
ing densities at fixed percentile, using the binned CSI data shown

Figure 11. (Top) A global fit of the power-law model for the mean growth of
density percentiles in CSI is shown by the blue solid lines. Dashed lines are
shown at density percentiles at Φ−1(p) < −1, which were excluded from
the fitting to mitigate against potentially larger systematic uncertainties in
the measurements of low densities due to small number statistics. (Bottom)
The contours for the 68% and 95% confidence intervals in α and β for the
fit to the binned data shown at (Top).

in Figure 7. Solid blue lines trace the best-fit model for those
percentiles used in the fitting. The lowest density percentiles, ex-
pected to be systematics-dominated, were excluded from the fit
and their model curves are shown using the dashed blue lines. In
Figure 11(bottom), 68% and 95% contours of the joint posteriors
on α and β are shown, with marginalized confidence intervals of
α = 1.96±0.04 and β = 2.07±0.11 (68%). These inferences for
the density- and time-dependence of the mean growth of structure
in the nonlinear regime do have some mild sensitivity to the details
of the redshift binning and to the samples of galaxies used in the
analysis.

We have varied the depth of the selection, the widths of the
redshift slices, as well as the maximum redshift of our study. We
show marginalized posteriors for α and β from ∼ 50 such variants
of our analysis of the CSI data in Figure 12. Most of these are not
fully independent of each other, but the combined posteriors, shown
with thick black lines, do yield a small reduction in systematics
related to the redshift binning and stellar mass depth.

Using the one-dimensional posteriors in Figure 12, we derive
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α = 1.98±0.04 and β = 2.01±0.11. Recall from §2—and Equa-
tion 14 in particular—that under the hypothesis that density fluctua-
tions grow through (Newtonian) gravitational collapse, the average
growth rates of ensembles of early density fluctuations should scale
with the square of their initial density contrasts—an expectation
now confirmed. Secondly, mean growth trajectories were predicted
to be quadratic in time (again, the time since the epoch of decou-
pling). While the measurement uncertainties are larger for β than
for α , the data also confirm that the mean growth trajectories fol-
low the quadratic time dependence expected for gravitational col-
lapse.8 Together, these are the first direct comparisons of observa-
tional data on these scales to fundamental predictions for nonlinear
structure formation.

In the next section we discuss a few implications and side ef-
fects of our results.

8 IMPLICATIONS

For several decades, the most popular approaches to modeling and
understanding the growth of structure have been through Monte
Carlo techniques like N-body simulations or through the use of halo
merger trees. And while such approaches offer the promise of fully
self-consistent models of galaxy growth over a broad range of as-
tronomically interesting lengthscales, both internal and external to
galaxies, their richness and detail are not typically well-matched to
the level of detail found in astronomical surveys. This mismatch
can limit the thoroughness and ease with which one can confront
data with theory, but—more importantly—it presents a substantial
barrier to learning what astrophysics the data do speak to. Exactly
what information is present in observations of cosmological en-
sembles of galaxies? The answer to this question remains elusive,
as fitting semi-analytical models to observations remains an un-
derdetermined problem (owing, e.g., to the extensive covariances
between parameters; Benson 2014),

It is within such a context that one can view recent semi-
empirical approaches to galaxy formation—such as by Peng et al.
(2010) and Peng et al. (2012); or Behroozi et al. (2013) and Moster
et al. (2013); or Gladders et al. (2013), Oemler et al. (2013) and
Abramson et al. (2016); or by Kelson (2014) and Kelson et al.
(2016)—as pieces of a nascent movement to identify the essential
content of observations, chiefly to uncover why some galaxies form
stars more slowly or rapidly than others and at what times.

The reduction in the numbers of assumptions or parameters
in such galaxy evolution frameworks ought to have helped ob-
servers glean no more than what their data could provide, but be-
cause such semi-empirical frameworks are paradigmatically dis-
tinct (see Abramson et al. 2016), they credit different—and often
incompatible—physics as central to explanations for trends in the
data. These incompatibilities are axiomatic, such that the concerns
of one framework may even be unintelligible—literally without any
associated or interpretable meaning—to the others.

And depending on whether one begins from the data—such
as starting with the a priori assumption of a narrow, empirically
prescribed “main sequence of star formation” on which all grow-
ing galaxies form stars as in Peng et al. (2010) until they don’t;

8 This mean dependence on time has been seen at the galaxy level as well—
and leads naturally to the observed ”main sequence of star formation” and
high-redshift stellar mass functions. Kelson (2014) and Kelson et al. (2016)
explored these ramifications from the standpoint of galaxy growth as a
stochastic process.

Figure 12. (Top and Bottom) The marginalized posteriors for α and β in
thin coloured lines from forty variants of slicing the CSI dataset, in stel-
lar mass and redshift binning. Combining the posteriors from the different
slicings of the data, we have derived a combined set of posteriors for α

and β shown by the thick black lines. We find that α = 1.98± 0.04 and
β = 2.01± 0.11, consistent with expectations for unabated gravitational
collapse of early density fluctuations.

or that there exist unique and monotonic mappings between theo-
retical dark matter halo accretion histories and stellar mass growth
(Moster et al. 2013; Behroozi et al. 2013); or the a priori adoption
of the Lilly-Madau plot (Madau et al. 1996; Lilly et al. 1996) as
indicative of Hubble-timescale life cycles of galaxies as in Glad-
ders et al. (2013) or Abramson et al. (2016); or whether one begins
with a priori assumptions that the physical process of stellar mass
growth is simply a stochastic process (Kelson 2014; Kelson et al.
2016)—each conceptual framework yields strong qualitative and
quantitative statements about the life cycles of galaxies while re-
producing many other aspects of galaxy-level data.

Here we attempt to explicitly bridge the gap between N-body
simulations and those semi-empirical conceptual—analytical—
frameworks. By recognizing that astronomers are in the busi-
ness of measuring differences between different cosmologically
representative volumes observed at different epochs, we hold—
operationally—that our data sets most accurately reflect volume
averages of the complex, nonlinear dynamics that undergird the
evolving density field (in the real universe as well as in cosmo-
logical simulations). Upon volume averaging the fluid equations,
we obtained relatively simple analytical expressions for the ex-
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pected growth of early density fluctuations—expressions confirmed
by measurements of the distributions of local densities in CSI over
7 Gyr of history.

With exact analytical prescriptions for the average growth of
those density fluctuations transitioning to nonlinearity at the start
of star formation in hand, we can next ask how baryons follow or
break from these expectations, and how galaxy number counts fol-
low or break from these expectations, to begin the work of asking
why (and in which kinds of density fluctuations) fewer and fewer
baryons are turned into stars after z ∼ 2, i.e. why and where the
Lilly-Madau plot turns over.

This new analytical approach to the growth of structure ap-
pears to have promise as a new conceptual framework for model-
ing the galaxy in a statistical mechanical sense. That the MDPL2
simulations (Klypin et al. 2016; Knebe et al. 2018) show similar
trends implies, too, that the catalogs of objects being produced by
N-body simulations reflect the physical processes encoded by the
fluid equations and (Newtonian) gravity (as they should). So while
simulations ought to continue providing detailed ramifications of
physics on small—galaxy-level—scales, this new work suggests
that a volume-averaged analytical approach—encapsulating the
general climate in which galaxies grow—should be seen as mathe-
matically complementary to Monte Carlo methodologies, while be-
ing potentially better matched operationally to astronomical survey
data.

However, if these results are seen stricly as a positive endorse-
ment for standard approaches to the growth of structure, a set of
stark warnings lie beneath the surface. Because another lens with
which to view these results is through the language of the growth
of structure as a horrible diffusion problem, though one where the
particles do not experience stochastic changes to their (growth) tra-
jectories like those in an ideal gas. If growth trajectories were like
particle trajectories in an ideal gas, changes to accretion rates would
be truly random, and mean growth rates, 〈Dδ/Dt〉would scale with
t1/2. Under such a scenario growth of density fluctuations would be
“Brownian,” or “Markovian,” another way of saying that changes
to accretion rates at a given time are always, and everywhere, inde-
pendent of previous ones.

But during nonlinear gravitational collapse, galaxies and
halos—all matter density fluctuations—interact with each other,
imposing what may be called “long-range dependence” on each
others’ growth trajectories by some, or 1/ f noise by many oth-
ers. The gravitational interaction between density fluctuations then
occurs on all timescales, meaning that changes to accretion rates
become correlated with previous changes, always and everywhere.
The more (and longer) the particles interact with each other, the
more the mean accretion rate, 〈Dδ/Dt〉, grows faster than t1/2

through positive reinforcement. The result is that a process of mat-
ter accretion scales as tH where H is known as the “Hurst parame-
ter.”

In §2 we derived 〈Dδ/Dt〉 ∝ t, implying that the growth of
structure acts like a nonnegative stochastic process with H = 1 (or
a process with a 1/ f noise spectrum identically). Intriguingly, this
is the same kind of process that was identified at the galaxy level by
studying the main sequence of star formation and the stellar mass
function (e.g. Kelson et al. 2016), which both behave as if they were
governed by a process with H = 1.

An important implication immediately follows; quoting Man-
delbrot & van Ness (1968), about the properties of a stochastic pro-
cess X(t, . . .):

In analyzing time series X(t, . . .)... it is customary to search

for a decomposition into a “linear trend component” and an
“oscillatory component.” The former usually ... is interpreted
as due to major “causal” changes in the mechanism generating
X(t, . . .). The latter, on the contrary, is taken to be an “uncon-
trollable” stationary process, hopefully free of low-frequency
components.

It is obvious that, in the case of [. . .] H 6= 1/2, difficult sta-
tistical problems are raised by the task of distinguishing the
linear trend ∆t from the nonlinear “trends” just described.

That is, when H > 1/2, the noise itself—and long-term correla-
tions in the noise—imposes long-term trends through (positive) re-
inforcement. In the case of nonlinear structure formation, gravity—
and gravity alone—provides that reinforcement. Mandelbrot & van
Ness (1968) end the above passage by stating that such stochastic
processes fall “outside the usual dichotomy between causal trends
and random perturbations.” Stated even more directly: standard
tools for interpreting astronomical observations of galaxy ensem-
bles are not appropriate for extracting historical information about
individual galaxies.

As observers, astronomers are used to looking for signal by
smoothing over what appears to be noise. Galaxy evolution as a
practised field of study has largely been an effort to trace medi-
ans (or means) of galaxy properties with redshift/time, to smooth
over the deviations from those medians as if those deviations were
the “uncontrollable noise.” Decades have been spent looking fur-
ther into the distant past in order to continue measuring that “lin-
ear trend component”—the mean evolution of scaling relations—
under the assumption that these measurements constrain fundamen-
tal laws of astrophysics in some galaxy formation theory that is
both accessible and deterministic. The tools to exploit astronom-
ical data by other—and more meaningful—means are practically
non-existent, due to the fact that the “linear trend component” and
“the noise” both arise from the same underlying process, and in
equal measure. As a result, the development of new tools to model
distributions should be seen as paramount if progress is to be made
in extracting meaning from cross-sectional studies of galaxies—not
from the evolution of medians of the data, but from the “uncontrol-
lable noise” that itself is the signal.

Until now, however, no path to generating accurate mod-
els of the nonlinear growth of structure—outside of N-body
simulations—had seemed possible. But by shifting from an Eule-
rian coordinate system for the growth of structure, to a Lagrangian
one, we have begun assembling an analytical framework for galaxy
formation that more closely aligns with the cross-sectional nature
of astronomical studies—for the evolving density field, as well as
for the distinct objects that are observed at late times (z<∼10). By
doing so, we aim to explicitly connect the early power spectrum
to the evolving content of baryons and stellar mass, and in a man-
ner connected to the growth of the objects we directly observe and
study.

So it is with a sense of optimism that we look forward, to push-
ing this new conceptual approach to its logical end. Derivations of
analytical expectations, such as those in §2 and elsewhere (Kelson
2014; Kelson et al. 2016), should be taken as starting points for new
analytical models of the macroeconomy of galaxy formation. For
example, the volumetric averaging of stellar mass growth can be
coupled with the diminishing supply of cool baryons, and, e.g., an
ever increasing presence of entropy (see, e.g. Kelson et al. 2016),
to construct ordinary differential equations for the evolution of the
star formation rate density in different ensembles of early density
fluctuations—different δp—with predictions for galaxy ensembles,
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their stellar populations, or even their heavy element yields, as
functions of late-time density.

Surely when this picture is complete, it will not only be a
robust description of the evolving density field that feeds galaxy
growth, but should provide new insights into its macroscopic
galaxy content as well—with an exactitude thought only approach-
able through Monte Carlo techniques. More importantly though, by
bypassing much of the fine-tuning of deterministic parameters that
can complicate other theoretical approaches, we will have confi-
dence that whatever is implied by such models will be an abstrac-
tion of exactly what our data have been trying to say all along.
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