Personal tools
You are here: Home / Papers / A Direct Measurement of Hierarchical Growth in Galaxy Groups since z ~ 1

A Direct Measurement of Hierarchical Growth in Galaxy Groups since z ~ 1

We present the first measurement of the evolution of the galaxy group stellar mass function (GrSMF) to redshift z>1 and low masses (M>10^12 Msun). Our results are based on early data from the Carnegie-Spitzer-IMACS (CSI) Survey, utilizing low-resolution spectra and broadband optical/near-IR photometry to measure redshifts for a 3.6um selected sample of 37,000 galaxies over a 5.3 deg^2 area to z~1.2. Employing a standard friends-of-friends algorithm for all galaxies more massive than log(M_star/Msun)=10.5, we find a total of ~4000 groups. Correcting for spectroscopic incompleteness (including slit collisions), we build cumulative stellar mass functions for these groups in redshift bins at z>0.35, comparing to the z=0 and z>0 mass functions from various group and cluster samples. Our derived mass functions match up well with z>0.35 X-ray selected clusters, and strong evolution is evident at all masses over the past 8 Gyr. Given the already low level of star formation activity in galaxies at these masses, we therefore attribute most of the observed growth in the GrSMF to group-group and group-galaxy mergers, in accordance with qualitative notions of hierarchical structure formation. Given the factor 3-10 increase in the number density of groups and clusters with M_\star>10^12 Msun since z=1 and the strong anticorrelation between star formation activity and environmental density, this late-time growth in group-sized halos may therefore be an important contributor to the structural and star-formation evolution of massive galaxies over the past 8 Gyr.

PDF document icon csi2submitted.pdf — PDF document, 581 KB (595129 bytes)